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Abstract

The role of experiment in elucidating the dynamic
mechanical behavior of inelaetic solids 1s discussed with
particular emphasis on the type of results which can be obtained
from wave propagatien experiments. Recent experimental results
obtained by the author and his co-workers are reviewed as is work
by other investigators 1n the field. Viscoelastic waves, plastic
waves and shock waves are considered and in particular a recent
observation by the author of the generation of tensile shock waves
in stretched rubber is described. The fracture behavior
of brittle plastics under stress-wave loading, and some recent

work by Phillips on stress waves produced by tensile fractures are

mentioned.




Introduction

Before reviewing experimental advances in the field of
stress wave propagation in anelastic solids it is perhaps
'appropriate to discuss the reasons that such experiments are
carried out and what type of information they can be expected to
yield. Elastic sollds are assumed to behave in a completely
linear manner where the components of strain are postulated to be
linear combinations of the components of stress; it is found that
for sufficiently small deformations the experimental behavior of
many real solids closely corresponds with this assumption. It
could be argued that even if this were not found to be so in
nature, the theory of linear elasticity would still be worthwhile
as a mathematical study, in that the physical assumptions are so
simple that their mathematical consequences should be investigated
purely as a problem in mathematical analysis. It might, of course,
be alternatively argued that applied mathematics should be
concerned with a description of the real world, and that the only
Justification for work on elastic theory is that it describes
real situations; if mathematical probiems are to be studied per se,
there are many more promising fields.

Fortunately, however, this question does not arise and the
Theory of mathematical elasticity is a well established discipline
which has ylelded many results which are essential to the design
of engineering structures. Now the mathematical problems set by

elastic theory are always difficult and often intractable, and the

field of experimental stress analysis has arisen as a result of
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this. Experimental work is used as a form of analogue computer
which produces numerical answers to problems for which exact
analytical solutions are not known. The experimental technique
of this type which has received perhaps the greatest attention

is photoelasticity — this depends on the observation that for
many materials the birefringence produced by elastic deformation
is linearly related to the applied shear stress. In using this
technique it is important to match the value of the Poisson's
ratio of the material used for the model to that of the structure
under investigation. It 1s also generally found to be limited to
two-dimensional stress-distributions, although in recent years

the technique has been extended by frozen-stress methods. With

the aid of these,some three-dimensional problems can be tackled;
the use of photoelastic coatings has also led to considerable

experimental advances. There are many books on the theory and

practice of this subject of which the classic by Coker and

Filon [1] and the treatises by Jessop and Harris [2], Frocht [3],

and Durelli and Riley [ 4] should be listed.

The use of electrical strain gages enables one to measure
the strain in a model of the same material as the structure to be
analyzed and the 'Handbook of Experimeﬂtal Stress Analysis' [5]
gives excellent accounts of bdth this technigque and that of photo-
elasticity.

When we come to dynamic problems which involve only
elastic deformations, most of the above considerations apply with

equal force, and although one more physical’parametér, namely the
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density, is now involved, theoretical solutions can be written
down for several simple problems. Here again, the reason for
carrying out experiments 1s to obtaln numerical solutions to

problems which are mathematically intractable, and the experi-

e

mental apparatus may again be regarded as an analogue computer.
Now when departures from exact elastic behavior take place, |
the nature of the problems becomes quite different; theoretical
predictions are possible only if the inelastic behavior can be /
specified mathematically and it is found that the way in which 1
materials devliate from perfect behavior varies from solid to
solid. The deviations are found to be of two types. Fifst, as a
result of mechanical yielding (or because the magnitude of the
sStrains is becoming comparable with unity), the simple Hookean
relation between stress and strain is found no longer to be valid
and the strain becomes a non-linear function of the stress.
Furthermore the value of the strain may cease to be a univalued
function of the stress, and depends upon the particular path by
which the final stress was reached. These are the types of
deviations which are dealt with in the mathematical theory of -
plasticity and in the mathematical study of large rubber-like
deformations. In these theories it is, however, assumed that, so
long as inertia effects can be neglected, the stress-deformation
relation does not depend on the rate of loading and the stress-
strain curve is the same for all straining ratesf These theories
give predictions which are found to approximate very closely to
the results observed experimentally,on the one hand with metals

and on the other with some rubbers.




Now 1n addition to this type of deviation many solids
show time-dependent stress-strain behavior, thus if a constant
load is maintained the strain is often found to increase steadily
with time; this phenomenon is known as creep. Alternatively, if
the material is deformed and the deformation is held at a fizxed
value, the Stress is found slowly to decrease, this is a

phenomenon known as stress relaxation. Such materials are termed

viscoelastic and for small deformations many of these materials

are found to obey Boltzmann's Principle of Linear Superposition.

This principle states that if a stress history ol(t)
produces a strain history el(t) in a specimen, and a stress
history 02(t) produces a strain history 82(t) in the specimen
then if the combined stress history ol(t)+02(t) is applied, the
strain history will be given by el(t)+€2(t). A particular
application of this principle is that if a stress history is of
the same shape but has twice the value at each instant, the
resulting strain-time curve will have the same shape but twice
the amplitude. Materials which obey Boltzmann's Principle are
termed linearly viscoelastic,and the relation between stress and .
strain in them can be expressed, either in the form of a convolu-~
fion integral or as a differential equation which relates the
stress and strain in terms of the derivatives of these two
quantities with respect to time.

Many high polymers and rubber-like solids are found to be

. . . for small strains,
linearly viscoelastic/and the theory of wave propagation through

solids of this type has been treated theoretically for quite some




time, although often mathematical models which are analytically
convenlent but physically unrealistlic have been employed.
Hunter gives a comprehensive review of work in this field up to
about 1960 [6] and the subject has also been reviewed by the
present author [7-9].

The theory of wave propagation through materials with a
yield point, the stress-strain behavior of which is essentially
non-linear but is not rate-dependent was first considered by
Donnell in 1930 [10]. It has subsequently been developed by
G.I. Taylor [11], von Karman and Duwez [12], Rakhmatulin [13],
and White and Griffis [1L]. Accounts of this theory can be
found in books by Kolsky [15] and Goldsmith [16] as well as in
review articles by Broberg [17], Abramson, Plass and Ripperger [18],
Cristescu [19] and by Craggs [20]. This theory has been found to
predict fairly closely the propagation of large amplitude wavecs
through metals although,as discussed later, observations which f
must be due to rate effects have become increasingly apparent in /
recent years.

The theory of waves of finite amplitude in solids has
received considerably less attention, but one aspect of it namely,
the setting up of shock waves in solids, has been studied
intensively by a number of theoretical and experimental schools,
and a review of this work by Duvall [21] summarizes the advances
made in the field.

Most real materials are found to be to some extent both /

non-linear and rate-dependent in their stress-strain behavior, and




although the two extreme cases, namely, plastic wave propagation
and linear viscoelastic wave propagation, approximate very closely
to the behavior of metals and polymers respectively, even here
deviations are observed. For plastic waves, for exaﬁple although

the velocity of the plastic wavefront agrees with the simple

theory, the distribution of plastic deformation is found not to
be in agreement with the theoretical predictions. Furthermore the
rate-independent theory predicts that each element of strain

travels with a velocity given by (S/p)l/2

where S is the tangent
modulus at that strain. Bell [22] tested this hypothesls experi-
mentally by pre-straining a copper,wire in tension quasi-statically
and then sending an additional tensile pulse along it. Since the
wire was already well into the plastic range due to the static
loading, the pulse would be expected to travel,according to the
rate-independent theory, at a velocity considerably below the
elastic wave speed. Bell found, however, that the superimposed
pulse traveled at the velocity (E/p)l/2 where E was Young's
modulus for copper, the modulus which should be applicable only
for very small strains. This result was confirmed by Sternglass
and Stuart [23] for copper and led to similar work by Alter and
Curtis [247] on lead specimens. The results of these experiments
seem to be explicable only in terms of a rate-dependent theofy
and theories of this sort have been developed by Sokolovsky [25]
and Malvern [267],[27]. These theories, although based on highly
simplified models show the general effect of a velocity of

1/2

propagation for rapidly changing stresses of (E/p) ,while the




quasi-statlc stress-strain curve is that observed experimentally.
Although the mathematical treatments of wave propagation in such
non-linear viscoelastlic solids is necessarily involved, more
theoretical work of this type would certainly‘prove useful.

/
When the amplitude of the stress pulses becomes

sufficiently large, the specimen fails completelys;and brittle or ;
ductile fractures take place. Interest in these problems was
revived in the Second World War,and work along these lines has
subsequently continued. Accounts of the results of investigations
on metals are given in the book by Rinehart and Pearson [28] and

also a general discussion will be found in a recent review

article by Rader and the present author [29].

Linear Viscoelastic Solids

The relation between stress and strain for most solids is'
found to depend, to some extent,on the duration over which the
stress 1s maintained. Thus if a constant stress is applied to a
solid specimen, the strain is, in general, found to increase
gradually with time,and this phenomenon is called creep.
Alternatively if a constant deformation is maintained the stress
is found to decrease monotonically with time and this phenomenon

1s called stress-relaxation. The magnhitudes of these phenomena

can be relatively very small, as 1s found to be the case for
metals, or relatively quite large as is found for many soft
plastics. The creep and stress relaxation may be linearly pro-
- portional to the stress, or they may be complicated functions of

the stress and time.




When the creep is linearly proportional to the stress,
the mathematical treatment is considerably simplified and the

material is called a linear viscoelastic solid [see Gross [30]17.

Thus if we first consider uniaxial extension we have that a
constant stress o applied at time t=0, produces a uniaxial

strain € such that
e =0 P(t) (1)

where Y(t) is called the creep function.
If we have a loading history which consists of a series
of constant 10ads'Acl,Adz,A03,...,Aon,which can be either

positive or negative, commencing at times t.,t,,t ,...,tn ete.

1°72°7°3
then as a result of the principle of linear superposition, the

strain at any time t is given by

p=n
e(t) = & Ao_ v(t-t ) ' (2)
p=1 P "
and in the 1limit for a continuous loading history we have

9

e(t) = v(t-1) I ar (3)

—
—
t

T==
This 1s one mathematical expression of Boltzmann's superposition
principle. An alternative representation is to consider the

specimen to have undergone a particular deformation history e(t)
and express the stress o(t) as a convolution integral involving

the strain and the stress relaxation function P (t) thus
=%t
= | Fre—-) e
o(t) j P(t-1) 5= dr ()

T =w=00




These methods of describing the stress-strain relations of

linearly viscoelastic solids are physically the most satisfactory,
but without some knqwledge of the nature of the creep function

P (t) or the stress relaxation function ¥(t) they are not particular-
ly useful in solving specific problems, and an alternative

approach has been to express the stress-strain relations as

linear differential equations involving the stress, the strain and
thelr derivatives with respect to time. Thus for a single stress

component 0 and a single strain component €,we may write

Po = Qe (5)

where P and Q are linear differential operators thus

2
d da
P=a +a_+a——'+...
1 4t 2 dt2
and _ (6)
2
o d
Q=b +b _'—+b_+aoo
o 1 dt 2 dt2

This treatment can readily be extended to three dimensions

by defining the stress and strain deviators 84 and e, . by the

J iJ
relations
S.. = 0., - Xg.. & (7)
i3 13 T 3 %%k °ij
and
- 1
€13 T €15 ~ 3 Exk %13 (8)

(where Gij is the Kronecker delta thus Gij = 1 when i=j and

Gij = 0 when 1#j).We can then write the stress-strain relations

in terms of four linear operators; thus
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Psij

Q €y (9)
and

| = 1
Ploj; = Q'eyy | (10)

where P and Q here describe the shear behavior, P' and Q' the
bulk behavior.

The use of linear operators such as those given by these
equations allow viscoelaétic problems to be treated in terms of
simple linear differential equations,and so long as the response
of the viscoelastic material can be reasonably approximated to by
a few terms in the operational polynomials, it is possible to
obtain solutions of/diggﬁigigroblems in closed form, or at least
to obtain numerical solutions. The use of finite polynomials for
P and Q 1is éxactly equivalent to the assumption that the material
is behaving like a mechanical model composed of perfectly elastic
springs and viscous dashpots;(for the latter, the velocity is
assumed proportional to the applied force). The three simplest
models of this type are the Maxwell model for which P = ao+a1 %E

d

and Q = b1 3T and this model corresponds to a Hookean spring and

a viscous dashpot in series, the Kelvin-Voigt model which is a

spring with a dashpot across it and for which P = a, and
Q = bo+b1 %E’ and the standard linear model which corresponds to

elther a Maxwell model with a spring across 1t or a Voigt model

and

with a spring in series with it, and for which P = ao+al %E

Q = bo+b1 %f' A number of dynamic problems, including
longitudinal wave propagation along a thin filament have been

treated by Lee and his co-workers [31] and the results of this
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work give a general qualitative picture of the phenomena to be
expected. As is discussed below, the quantitative agreement 1is
not so satisfactory except for a few rather special solids.
Another way of treating linear viscoelastic behavior is
to consider how a specimen responds to a deformation that varies
sinusoidally with time. Since the material is assumed to obey
a linear differential equation,the stress will oscillate ét the
same angular frequency as the strainjalthough not necessarily in
phase with it. Thus for a uniaxial deformation of angular

frequency w,we have if the strain e is

e = g, cos wt : (11)

the uniaxial stress i1s given by

g =a cos(wt+s) (12)

The response is then defined by the ratio of the stress amplitude
To the strain amplitude, i.e. E¥ = Go/eo, and also by the angular
phase lag 6§, both of these quantities are in general frequency
dependent.

These two parameters are comparatively simple to measure,
and such measurements have been carried out by many workers over
extremely wide ranges of frequency. These include Lethersich [32]
who measured the response of specimens of several common polymers
in torsional oscillation. Figure 1 shows a plot of his results
for loglo(tan §) against 1oglow and the results are compared with
the response expected for Maxwell, Kelvin—Voigt and standard linear

solids, (the positions of these latter curves are arbitrary). On
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the same plot are shown the measured response of two organic
glasses, hydroxy pentamethylflavan and glycerol sextol pthalate.
These materials are of comparatively low molecular weights and
the points are based on measurements made by Benbow [33]. It
may be seen that although the behavior of polymers is badly out

on a numerical basis from that of the model solids, both organic

~glasses correspond very closely to Maxwell solids over several

decades of frequency. . Only at higher frequencies do they too
begin to flatten out llke the high polymers.

The figure shows that if a simple model is to be taken
for the high polymers, which are after all by far the most
important viscoelastic solids, the assumption that tan 6 is
independent of frequency is a far better one than any of the
simple mechanical models.

The theory of linear viscoelasticity shows that tan ¢
and E¥ are not independent functions and that if for example E¥
is known at all frequencies,tan § can be calculated for all
frequencies. Similarly, if tan 8§ 1s known at all frequencies,
dE¥/dw at all w can be determined,and hence if the value of E¥
is known at any one frequency W E¥ at all frequencies can be
determined. In the particular case where tan § is independent

of w over a large frequency range, the approximate relation

2 tan ¢
% ~ e tan ©
E¥(w) Eo(l + -

n w/wo) (13)

may be shown to hold, where EO is the value of E¥ at some

standard frequency W
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We now come to the propagation of an infinite train of
sinusoidal waves of angular frequency w along a filament. If at

the origin,the stress ¢ 1s defined by

¢ =g cos wt (14)

the stress at any point a distance x from the origin 1is

0 =0 exp(-ox)cos w(t-x/c) (15)

where o is the attenuation coefficient which is given by

w tan %

@ = ——0, (16)

and ¢ is the phase veloclty which is given by
1

¢ = (B%/p) sec & | (17)

E¥ and tan § are here assumed to have the values appropriate to
the angular frequency w . Now since linear superposition applies
an expression can be written down for the propagation of a

disturbance of any shape. Thus, if the strain at the origin €(0)

is given by the Fourier integral
e(0) = j Aw)exp iwt du, (18)
A _

the strain e(x) a distance x along the filament is then given by the

expression

e(x) = J A(w)exp[-axtiw(t-x/c)]ldw (19)
o
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where a and ¢ are both real functions of w whereas A(w) is, in
general, a complex function of w.

In order to calculate the change in shape of any mechanical
pulse as it progresses along a viscoelastic rod all that is
required is a knowledge of how a and c¢ vary with frequency over a
sufficiently wide frequency rangg,and direct measurements of these
quantities can be made by observing the phase and amplitude of
sinusoidal waves travelling along filaments [e.g. Hillier and
Kolsky [34 ]and Hillier [35]]. Alternatively the value of c¢ and
o. as‘functions of w can be obtained from the values of E¥ and

- tan § using relations (16) and (17). Once the values of c¢c and o
are known over a sufficiently wide range of frequencies the
Fourier integral can be approximated to by a Fourier sum of
cosines and sines.

If we are able to use the approximate relation (13),
(which is appropriate for most polymers at temperatures remote
from their transition temperature) we find that for the phase

velocity
c(w) = e (1 + B2 pnu/u ). | (20)

The shape assumed by a sharp pulse after it has travelled some
distance along a rod of any such polymer can be obtained in non-
dimensional form [see Kolsky [36]] and the 'universal shape!' of
- a pulse can be calculated once and for all. The difference caused
by variations in initial shape rapidly disappear,since these are

produced by thebhigh frequency components which are greaﬁly
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attenuated. Figure 2 shows this universal shape calculated
theoretically and compares it with the shape of the pulse
observed from the sharp blow produced by the detonation of a
small explosive charge at the end of a polymethylmethacrylate
rod after it has travelled 6 meters. It may be seen that the
agreement 1is extremely satisfaétory. |

In such experiments as those described above the visco-
elastic modulus involved is a generalized form of Young's modulus,
E, but for most three-dimensional problems in wave propagation
two time—dependent moduli are involved which correspond to the
two elastic constants in three-dimensional elasticity. Physically
the two most reasonable moduli to consider are those which corre-
spond to the shear modulus and the bulk modulus, but experi-
mentally the latter 1s rather difficult to measure. Recently
Lifshitz and the author [ 37] have studied the propagation of
spherical pulses in large blocks of plastics using an experimental
set-up illustrated diagram in figure 3, and have found that the
viscoelastic bulk modulus as well as the shear modulus is frequency
dependent. For the three plastic studied namely, polyethylene,
polymethylmethacrylate and polystyrene, the value of tan & for
volume changes was found to be about one fifth of its value for
shear deformations, but it 1s too early to say whether this is a
general rule for polymers of this type, or whether the similarity

of the results for the three polymers is to some extent coincidental.

The observations that the bulk loss foilows the shear loss over a
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that what is observed as 'bulk viscosity' macroscopically is the
result of shear losses on a molecular or miéroscopic scale; for
a material composed of long chain molecules this is not
particularly surprising on physical grounds. It should be
emphasized that for ordinary fluids the bulk losses are a tiny
fraction of the shear losses due to viscosity.

Figure 4 shows the observed pulse shape
in a block of polyethylene compared with the shapes predicted on
the basis of assumption that, (a) the bulk loss is zero, (b) the
bulk loss 1s one fifth of the shear loss and (¢) that the bulk
loss is equal to the shear loss. It may be seen that the agree-
ment observed between the experimental results and the curve
based on the second assumption is extremely close.

Very recently Tsai and the author [38] have observed the
pulses produced by the impact of steel balls as they propagated
over the surfaces of blocks of polyethylene and
polymethylmethacrylate, The results of this work have
shown that the assumption that the ratio of the shear loss to the
bulk loss 1s a constant once again gives excellent predictions of

the shapes of the pulses propagatedlover the surfaces of the

specimens.

Plastic Waves

The time dependence of the stress-straln relation for
most metals is very much less marked than it is for high polymers

and,as a first approximation, the assumption that the stress-strain
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relation is time-independent is a perfeétly satisfactory one for//
most purposes. The first treatment of the problem of wave
propagation along a material with such characteristics was
published by Donnell [10] in 1930. Donnell considered the
propagation of a longitudinal step wave along a thin rod of a
material which had a bilinear stress-strain curve, the first

part of the curve was assumed to correspond to the elastic
behavior, and the second to strain-hardening associated with
plasticity. Donnell showed that under these conditions two wave
fronts would propagate along the rod, the fastest one travellling

at the elastic wave speed (E/p)l/2

where E ié Young's modulus for (
elastic deformations, and the second which has been termed a
plastic front at a speed given by (S/p)l/2 where S is the slope of
the plastic portion of the curve.

The subject lay dormant for about ten years and only
during the Second World War did a number of workers, all apparently
unaware of Donnell's paper, reopen the question of plastic waves.
In England, G.I. Taylor [11] tackled the problem, in this country
it was von Karman and Duwez [12] and White and Griffis [147, while
in the Soviet Union the problem was treatéd by Rakhmatuiin [13].
Apparently, here again, there was little communication between these
separate workers and only later were the results published. As
mentioned in the introduction, the nature of plastic wave propaga-
tion has been reviewed by several authors [15-20] and the predictions

of the rate-independent theory are found to be reasonably borne out

in practice. A careful examination of the results of Duwez and
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Clark [39] by Lee [31]has shown that the distribution of
permanent plastic strain does not quantitatively agree with that
observed experimentally, and although this was originally attributed
to the complicated reflections of the plastic wave during the
unloading process — a number of features and particularly the
absence of a sharp plastic wavefront led Lee to surmise that the
rate dependence of the stress-straln curve was responsible for the
experimentally observed deviations. Malvern [26] developed a theory
to account for such deviations and has recently shown [27] that
the original calculations were subject to computational error and
were in any case taken for far too late a time, the true picture being
very much closer to the observed behavior. Figure 5 shows the
curves obtained by Malvern for two times after the first applica--
tion of the load. It may be seen that the plastic wavefront is
much less well-defined than in the rate-independent theory and the
plateauxof plastic strain do not persist so far down the wire.
This observation is in accord with the experimental observations
of many workers in the field including those of Duwez and Clark [39]y
Douch and the author [L0] observed similar effects with aluminum
and :: copper specimens. A year before Malvern's first paper
appearedJSokolovsky [25] in the Soviet Union published a similar
type of visceo-plastic theory and this led to the same equations as
those derived by Malvern. He did not, however, carry out any
specific calculations of the effect of fate-dependence.

At about the same time Bell [22] tested the rate-independ-

ent theory in another way, he stretched a copper specimen and
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while it was being drawn he propagated an additional incremental
tensile pulse. According to the rate-independent theory such

1/2

incremental pulses should travel at a velocity of (S/p) where

S is the tangent modulus, in fact Bell found they travelled at a
velocity co=(E/p)1/2,the elastic wave>velocity, which, since the
copper was well in its plastic range, was considerably higher than(s/p)l/
As mentioned earlier these results were later
confirmed for copper by Sternglass and Stuart [ 23] and for lead
by Alter and Curtis [23]. In the work with lead, both the pre-
load and the incremental load were dynamic. Since, however, this
metal is notoriously rate-dependent and almost viscoelastic in its
behavior,the reliability of the conclusions to be drawn from this
work is to séme extent doubtful. The theories of Malvern and
Sokolovsky both predict that 'instantaneous' changes in stress
will travel at the elastic wave speed and thus although the time-
dependent non-linear behavior in both these theories 1s rather

simplified,they do seem to explain the observed discrepancles of

the shape of the plastic wavefront and the Bell effect very well.

In determining the stress-strain behavior of such non-linear
time-dependent solids at these very high loading rates one is to
some extent trapped in a vicious circle. Any attempts to make
measurements 1n short times inevitably involves wave propagation,
thegse cannot be interpreted unless the nature of the constitutive
relation is known. ﬁMany attempts have been made to circumvent

this difficulty, the earliest being by G.I. Taylor [41],

by E. Volterra [42] and by the author [43].
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These meihods depend on the use of auxiliary,steel bars
which are themselves not strained beyond their elastic limits and
along which elastic waves travel. Observations of these waves
enables the stress-strain behavior of the inelastic specimen to
be inferred. The method devised by the author (43) consists of
inserting a cylindrical wafer of the material under investigation
into a split 'Hopkinson Bar'. A mechanical pulse is then
propagated along the bars and by observation of the elastic stress
pulses in the two steel bars, the stress-time curve and the strain-
time curve for the specimen can be obtained.

During the last twenty years this method has been used
extensively for stress-strain measurements at very high rates of
‘loading by workers including Hauser, Simmons and Dorn [44],

Davies and Hunter [U45], Lindholm [46], Malvern [47], and
Ripperger [U48]. As was first pointed out by the author [M3],V//
there are serious limitations to this experimental method. Thus,
on the one hand if the specimen is long compared with the pulse
length, wave propagation can occur along it and it is not subjected
to constant longitudinal stressj if on the other hand the specimen
is very short, frictional effects prevent uniform straining and
barrelling may o;cur, although this can to some extent be reduced
by suitable lubrication of the interfaces. Eubanks, Muster and
Volterra [49] have considered the theory of the first effect, and
\/Bell [50] has made a careful experimental study of some of the /
errors which might be expected to take place. Jahsmann [51] \d/

recently has investigated theoretically the likely expected errors
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resulting from the wave propagation effects and he has shown that
N so long as the pulse length is several times the length of the
specimen, the errors are of manageable proportions.

Some yearé ago Bell [52] devised an extremely elegant
technique for making dynamic strain measurements. This method
depended on a diffraction grating ruled on the specimen, he
measured the angle of the diffracted beam and thus inferred the
values of the strains., He has used this technique successfully
in a number of dynamic stress-strain measurements and has shown
that the rate effect for highly annealed and extremely pure metals
is very small [53].

Most other workers using less highly annealed metals have
observed rate effects although these are generally quite small in
magnitude. Figure 6 shows a comparison of the 'static' and
'dynamic' stress-strain curves for pure annealed aluminum obtained
by Douch and the author [40] and it may be seen that the rate effect
is not large. Rate effects of the same order of magnitude were
observed in these experiments with pure annealed copper, while a
aluminum-silicon alloy showed no measurable rate effect. There
have been numerous other measurements of rate effects in metals and
they go back to the work of Clark and Datwyler [54] in 1938. The
work of Manjoine and Nadai in 1940 [55] is still of some interest,
and the excellent, work of Campbell and Marsh [56] and Maiden and

_ Green [57] shouldialso be referred to. This by no means exhausts
the list of workers in the field and reference should be made to
a recent survey report by Lindholm and Bessey [58], to the Proceed-

ings of the conference on the'Mechanical Properties of Materials
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at High Rates of Loading'edited by Lindholm [59], as well as to
the proceedings of the ASME symposium edited by Huffington [60].
The main conclusion which is derived from all these
investigations is that, except for steel, rate effects in metals
are relatively unimportant but can nevertheless sometimes result
in quite startling deviations such as the Bell effect. For most
purposes, however, it is sufficient to use a single 'dynamic'
stress-strain curve to account for the observed behavior, and even
if the 'static' curve is used the errors observed are not large.
Recently dynamic behavior under multi-axial loading has been
receiving much more attention, for example a paper on this subject
was presented by Lipkin and Clifton [61] at the last IUTAM'Congress.
When we come to other non-linear time-dependent behavior
The experimental evidence is very much more sparse. Goldsmith and
Austin [62] have studled wave propagation in diorite rock specimens
and found that the loss for this material is of a frictional type
and that the modulus 1s not frequency sensitive. Calvit, Rader,
and Melville [63] performed some preliminary measurements on pulse
propagation along piasteline-clay rods and found that Whereas
this material behaves like a linear viscoelastic solid for pulses
of small amplitude, at larger amplitudes the material flows
plastically like a metal. Bodner and the author [647] studied both
éhe free oscillations and the propagation of pulses in lead bars
and found that the logarithmic decrement was amplitude dependent
but the modulus was insensitive to frequency. This resulted in

the propagation of more or less symmetrical pulseslwhich decreased
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in amplitude and broadened as they travelled along the lead bars.
Another type of non-linear behavior on which a large

amount of experimental and theoretical effect has been expended,

i
H

is the propagation of shock waves in solids. Most of this work

is concerned with the propagation of large amplitude compression
pulses from the detonation of explosive charges on blocks of the
solids. As a result of the increasing value of the bulk modulus
at these high pressures, shock fronts are producible, this work
enables constitutive equations relating pressure and volume to be
obtained, and as mentioned earlier, Duvall [21] gives an excellent
summary ‘of work of this type which has been carried out in recent
years.

Another type of shock wave can occur in tension when the
stress-strain curve is concave upwards, i.e. when the tangent
modulus do/de increases with increasing strain. Lee and
Tupper [65] have discussed the theoretical basis for such shock
wave generatilon in steel, where at large amplitudes the stress-
strain curve becomes concave. In the book [15] by the author it
is pointed out that similar behavior might be expected in rubber,
which also has a dynamic stress~strain curve which is concave
upwards. Figure 7 shows the velocity of propagation of small
sinusoidal waves along filaments of natural rubber as a function
of the tensile pre-strain. These measurements were carried out
by Hillier [66]. The large attenuation of high frequency waves
prevents very sharp shock fronts from being set up in the
material when it is in the unstretched state. If, however, the

rubber is highly stretched to begin with and an additional tensile
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pulse is propagated along it, &a tensile shock wave may develop
since the attenuation is then much lower. Mason [67] showed
indications of such behavior in his studies of the free

retraction of rubber specimens. Very recently the author has
carried out some hitherto unreported experiments to investigate
this effect. A specimen of natural rubber gum stock initially

1/2 inch square was stretched to five times its original length.
At one end a portion 10 inches long was extended to 11 inches so
that the strain in this small portion was 440%. This portion was
held at this extra strain by a small piece of steel plano wire
which was rapidly volatilised by the passing of a heavy electric
current, a tensile pulse then travelled along the stretched |
specimen. The velocity-time profiles of the tensile pulse at a
.series of stations along the rubber was measured by affixing light
wires to the rubber at various points along it)and amplifying the
currents induced in these as they cut the lines of force of strong
uniform magnetic fields,whiqh were broduced by permanent magnets. The
technique was similar to that described by Efron and Malvern [68].
Figure 8 shows the Velocity time profiles of the pulse as it
travels along the rubber band. The shapes are given at 1, 3, 5, 7,
and 9 ft. from the point of release. It can be seen that the
front of the pulse becomes progressively steeper as it travels
along the rubber specimen, ,and is quite sharp at the 7 and 9 ft.
stations+. A paper is being prepared on this work and it is hoped

that it will appear shortly.
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Stress Waves and Fracture

The earliest work on the fractures produced by stress waves
was carried out by John Hopkinson in 1872 [69]. Further work was
later carried out by his son Bertram Hopkinson [70] who was killed
in the FPirst World War. The subject was then neglected until compar-
atively receht timeé, but during and since World War II there has
been a steady output of work on this subject. The book by
Rinehart and Pearson [28] and a recent review article by Rader and
the author [29] cover many of these investigations, which have all
been concerned with the nature of the fractures produced in stress-

- wave loading. Recently the complementary problem namely the stress
pulses produced by brittle fractures has been receiving attention
at Brown University.

The first work on this was carried out by Tsai and the
author [71] who studied the surface waves produced by the impacts
of steel balls on glass plates. It was shown that when fracture
occurs the outgoing stress pulse shows 'spikes' which were other-
wise absent, and that the position of these spilkes agrees with the
theoretical analysis of the problem of a Hertzian impact.

More recently J. Phillips [72] has studied the problem
of the stress pulees generated in glass rods when they are broken
in tension and in flexure, a small notch was first made on the
surface of the rod to initiate fracture. The analysis of the
flexure problem is extremely complex but for the case of fracture
. in tension, Phillips was able to show that two pulses are

generated, one a longitudinal pulse, (this 1s to be expected since
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the tensile force goes rapidly from its initial value to zero)

and also a flexuralpulse; this results from the bending moment
set up by the asymmetrical nature of the stress release.

Figure 9 shows a comparison of the experimental curve observed by
Phillips with a strain gage mounted on the surface of a glass rod
at a distance bf 6.2 inches from the position of the fracture
initiation. The strain gage was mounted in line with the notch

so that both longitudinal and flexural pulses could»be observed.
These experimental results are coﬁpared with the calculations
made on the basis of the pfqpagatién of elastic waves.  along the
rod., He assumed that the fracture spread out from the point of
initiation at a constant velocity equal to 0.38 times the velocity
CO,Of longitudinal elastic waves along the rod. Cy T (E/p’)l/‘2
and that the stress in the unbroken region remained unchanged.
Phillips further assumed that the ldngitudinal pulse travelled
along the rod without change in form, while the equation governing
the propagation of flexural waves was that developed by
Timoshenko»[73], which R.M. Davies [74] has shown gives results
extremely close to the exact Pochhammer-Chree theory for
cylindrical bafs-when the firét mode of propagation is considered.
In order to take into account all the boundary conditions at the
plane of fracture, Phillips found he had to use both branches of
the solutions of the Timoshenko equation. It may be seen that

the agreement between experiment and theory 1is remarkably good.
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Conclusion

There are two ultimate reasons for carrying out experi-
ments on the dynamic mechanical behavior of anelastic solids.
The first is to obtain numerical data which can be used to
predict the mechanical behavior of systems under conditions that have
not hitherto been étudied. In order to do this, mathematical
models have to be set up which, while simple enough to make the
mathematics tractable, incorporate enough of the features of
physical reality to give reasonably numerical predictions of the
quantities in regions outside the field of measurement, and
which provide good interpolations or reasonable extpapolations of
the physical facts. It is often very tempting to believe in thg
physical existence of these models as for example in the existence
of real springs and viscous dashpots in linear viscoelasticity,
but generally nature is hothing iike so simple as this and a
realistic physical model of even something very much less
complicated, like liquid benzene, has never really been achileved.
The other reason for carrying out such measurements is
in the hope of obtaining a befter understanding of fhe molecular
processes which are responsible for the observed macroscopic
behavior. This approach has been extremely successful in
elucidating the behavior of gases but has been markedly less so
in treating the mechanical behavior of liquids and solids.
The theory of dislocations first developed by G.I. Taylor [75]
is a notable exception to this general rule but even here the

quantitative prediction of dynamic mechanical properties is
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still a long way off.

In conclusion 1t would perhaps be appropriate to call for
more experimental work even if it is at the expense of the vast
amount of theory which is so often based on oversimplified models
of mechanical behavior, and to make a plea for some workers in
the field to leave their desks and enter the harsh but exciting

world of the laboratory.
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Legends for Figures

Measured values of tan § compared with experimental results.
A - polyethylene, B - polymethylmethacrylate, C - ebonite,

D - polystyrene, E - hydroxypentamethylflavan, F - glycerol
sextol phtalate, M - Maxwell solid, K - Kelvin solid,

SL - standard linear solid.

Comparison of measured universal pulse shape with
experimentally observed pulse which has travelled through
600 cm. of polymethylmethacrylate.

Experimental set-up for pulse propagation in blocks of
plastics.

Comparison of observed pulse shape with that theoretically

. predicted for different values of bulk loss. A-zero bulk loss,

B-bulk loss = 1/s(shear loss), C-bulk loss = shear loss.

Comparison of rate-dependent and rate—indepeﬁdent postulates
in predicting plastic wave profiles (after Malvern).

Comparison of static and dynamic stress-strain ¢urves for
pure aluminum,

D&namic'modulus and téngent modulus of 'static'! stress-strain
curve of natural rubber as a function of longitudinal strain
(after Hillier). .

Stages in formation of tensile shock front in rubber specimen.

Strain gage'observations on surface of glass rod resulting
from tensile fracture. (aftér Phillips)
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